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A NOTE ON KINETIC ENERGY, DISSIPATION AND ENSTROPHY*

JIE-ZHIWUt, YE ZHOU$, AND MENG FAN§

Abstract. The dissipation rate of a Ncwtonian fluid with constant shear viscosity can be shown to

include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no

contributions to the change of kinetic energy. These dissipation constituents are used to identify typical

compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified

kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses

but in which the full dissipation reenters.
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1. Introduction. Wc make a gcncral theoretical examination on the relation between kinetic energy

transport, dissipation, and cnstrophy. First, we derive an exact but simplified transport equation for the

kinetic energy of viscous compressible flow, in which the full dissipation function is replaccd by the squares

of vorticity and dilatation. This forms a local counterpart of the classic Bobyleff-Forsyth formula [1] on

the integral equivalence of incompressible dissipation and cnstrophy under special boundary condition, and

provides a physical clarification on dynamic processes really involved in the evolution of kinetic cnergy. The

dissipation constituents are used to identify typical compact flow structures. Second, wc cast the incom-

pressible vcrsion of the simplificd kinetic-energy cquation to a novcl form, of which thc local spatical average

does not explicitly depend on boundary conditions, but the full dissipation reappears along with cnstrophy.

This result is of relevance to some current studies of intcrmittency and scaling laws in inhomogcneous and

anisotropic turbulence.

2. Dissipation constituents. Let w = V × u and 0 = V.u bc the vorticity and dilatation, S and T bc

the strain-rate and stress tensor, respectively, so that for Ncwtonian fluid T = (-p + AO)I + 2/_8 (e.g. [1,2]),

where I is the unit tensor, and # and A are the shear and second viscosity 1. Throughout this note wc assume

# is constant. The conventional transport equation for kinetic cncrgy E = [u]2/2 reads

(1)
DE

p--_ = pf .u + flp+ V. (T.u) - _,
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1One may also replace S by its derivatoric part S' = S - ½v_I so that T -: (-p + (_)I + 2#S', where ( = ), ÷ _# is the bulk

viscosity coefficient. This does not affect our argument but is less convenient.



wheref isa bodyforceand_ = AO2+ 2#S: S is thedissipationrate.It isstraightforwardto derivean
invariantdecompositionff_-- _ + _B, where

$ = (A + 2u)d 2 + stw 2,

(2) ff_B = -V. (2#B. u),

arc, respectively, a positive-definite part caused by _2 and [all 2, and a non positive-definite "dissipation"

caused by surface-strain rate tensor 2 [3]

(3) B-_gI-Vu T with V.B=0.

From (2) the compressible extension of the Bobyleff-Forsyth formula follows:

(4) /v_dV = /v[(A + 2#)92 + p,_,2]dV - 21t _ovn. B . ltdS.

Thus, if n. (B - u) = 0 on OV, we have an integral equivalence of _P and _.

A similar decomposition of T has been introduced by Wu and Wu [4-5]:

(5) W _- 'r + WB, 'r _- -HI + 2/KI, TB _ -2ttB,

where II = p - (A + 2p)0 is the isotropic part of T and N is the vorticity tensor. Substituting (5) into the

Cauchy motion equation reveals that TB plays no role in momentum balance. Now, substituting (5) into

V- (T- u) in (1) leads to a splitting of the work rate W per unit volume done by surface stress:

where

W = V- (T .u) = Wp+ Wo + W_ +WB,

wp = -v. (_), w_ = v. [(,_+ 2,)eu],

W_ = -? . (ttw × u), WB = -V" (2pB "u).

Thus, WB and OB are always self-balanced, making no contribution to thc change of E. Hcncc, Eq. (1) can

be simplified to

DE

(6) p_- = pl. u + _p + v. (_ u) - _,

which proves a local "equivalence" of • and _ under the conditi m that T be replaced by T simultaneously.

Whenever TB does a work (positive or negative), it is directly and locally dissipated to _PB which, as is

easily proved, does cause a change of the internal energy. Th_ refore, so far as its mechanical aspects arc

concerned, a Newtonian fluid can well be simplified to a hypoth,,tic medium of which the motion consists of

only an isotropic expansion/compression and a spin. A significa at saving of this simplification in numerical

computation was cited in [5]. The surface deformation, which is generically most complicated, plays no role

except on frec surface [4].

21n this report and Dishington's paper there is a sign difference in the definition of B.



In the above analysis a key issue is the distinction between _ and q_B or the relation between q_ and

_. Studying their distribution characters allows us to identify different coherent and compact structures in

high Reynolds-number flows. Typically, these include two shearing structures: thin vortex layers and tubes

and a compressing structure, shock waves. While across a shock there is evidently an extremely strong peak

of vq2, the distribution character of _02 and CB for shearing structures can bc easily illustrated by idealized

models. For a unidirectional shear flow with u = (U(y, t), 0, 0) in Cartesian coordinates (x, y, z), there is

= _ = _2 = \ Oy ) ' CB = o;

while for a pure vortex with u = (0, v(r, t), 0) and u_ = (0, O,w(r, t)) in cylindrical coordinates (r, 0, z), there

is

(ov$= _2, _ = WB = _4___ Or, _= _ Or- "

Notc that inside the vortex core (r < r0) with Ov/Or > 0 there is a negative peak of CB which cancels the

peak of _ (_ = _ .... at r = 0), so that q_ remains small as it should (_P = 0 in a solid-like core). But

outside the core _B reaches a hollow-tube like (macaroni-like) positive peak _PBmaz at an r = r,_ > r0,

which becomes the main contributor to q_. For r > rm the contribution of enstrophy to ¢ is neglcgible. The

peak behaviors of _ and _hB for layers and tubes can be easily checked by considering, say, U(y) = tanh(y/_)

with _ << 1 and an Osccn vortex with # << 1, respectively.

When Re >> 1, these idealized models can serve as local building blocks of more generic layer and tube

structures, provided that the strain components along the layers or tube axes are weaker than the vorticity

therein. In particular, in a compressible turbulence the strong peaks of _2 _2 and the simultaneous peaks of

aJ2 and ¢ arc good indicators of random shocklcts, filaments, and shearing sheets, respectively. Indeed, in a

numerical simulation of two-dimensional supersonic turbulence, Porter ct al. [6] have observed complex sheet-

like shocklet structures by visualizing dilatation field. From thcir direct numerical simulations of a uniformly

sheared incompressible turbulence, Tanaka and Kida [7] used the ratio _/_5 to identify many thin vortex

filaments with _/_P > 2 (as shown above, these high-enstrophy structures must be surrounded by weaker

hollow-tube peaks of strain), while at the high enstrophy region with comparable strain 1/2 < _/_5 < 4/3, the

vortex sheet structures were observed. These results arc confirmed by Boratav and Pelz [8], who conducted

direct numerical simulations of an unforced flow and investigated the strain-vorticity correlation in a plane

spanned by _P/# and enstrophy _//_. Now, our result provides a theoretical support for these identifications.

Interestingly, for the Oseen vortex at t = 1 we found q_B,,_/_,,_a_ = 0.09, completely independent of the

Reynolds number. The ratio rm/ro, which is about 1.2, has only a very weak dependence on Re. Thus,

as Re ---* oc and r0 ---* 0, the distribution of _ and _B (or the full _) for a filament becomes a singular

"spaghetti" enclosed by a singular "macaroni", having the same fractal dimension (approaching 1).

3. Kinetic-energy equation. We now further focus on incompressible flow with p = 1, which is a

typical situation where the thermodynamics is not involved. In this case (6) reduces to

DE
(7) D_- = f' u- V-(pu) - vV. (w x u) - _.

In the studies of turbulent-energy budgct one removes the divergence tcrms in (7) by taking average over a

region with periodic boundary conditions. Then for statistically steady turbulence and as u --* 0, one obtains

a balance solely between the work of stiring force f and energy cascade in integral rangc, and a balance solely



betweentheenergycascadeanddissipation(enstrophy)in ineltialrange(e.g.Frisch[9]).Thisprocedure
isnecessaryto obtaintheKolmogorovscalinglawandits mod_rn revisions.However,forthelocalscaling
of structurefunctionsin an inhomogeneousandanisotropictur_mlcncc,theboundaryconditionona small
sphere(in whichtheaverageis to betaken)mustbekeptgeneric.Therefore,it will behighlyinteresting
if a generalincompressibleenergyequationcanbecastto a formfreefromwork-rateterms,sothat the
averagingprocessdoesnotexplicitlyrelyonspecificboundaryconditions. We now consider this issue.

The advection of E and pressure work in (7) can bc combined to _- (uh0), where h0 is the stagnation en-

thalpy. To remove this term we split the momentum equation imo two parts: a transverse or divergence-free

part (including harmonic components), and a longitudinal or ,:url-frec part. Namely, wc make a decom-

position of f and the Lamb vector l = w x u, dcnoted by f =: f± +.fll and I -- |± + 111.It then follows

that

(8) Ou-_=l±-l±-vVx_o, Vh0=-/pl,

wherc l± is the projection of advection u- Vu onto the solenoidal space. From (8a) there is

OE
(9) o-7 : (/" - z±). u - t -

Compared to (7), the pressure work is absent, and advection rc,tains a "residue" l± • u, which is implicitly

boundary-dependent since the projcction is a global operator. Then, since

= -IoJI_, _B ----2uV. (u. VU) -----2uV2p,

there is

-uV. l = vV2ho = vV2E - ,, (¢ - $).

Therefore, from (9) a novel diffusion equation for thc kinetic energy follows:

(10) _-,V 2 E=(.f±-l.)-u- (¢+_),

in which dissipation and enstrophy appear simultaneously and _ymmctrically, but all boundary-dependent

work-rate terms disappear. Note that the reappearance of • in ([0) does not conflict with (7); it comes from

a part of the vorticity work (the other part being the diffusion o: E). Moreover, compared to the usual form

of the energy cascade [9], we now see that the cascade is neatly tcpresented by the statistic avcragc of l± • u,

which is dominated by the transverse Lamb vector and has a compact support where l± # 0.

4. Conclusion. It has been noticed that the relative coltributions to the dissipation from strain-

dominated and enstrophy-dominated structures may be relevm Lt to the strength of intcrmittency, as well

as to the scalings in longitudinal and transversal structure fur ctions [10]. Now, by placing the enstropy

and dissipation in equal footing and exhibiting their interplay, Eq. (10) clearly emphasizes that, if a more

boundary-independent (and hence more universal) theory is to [ e reached, both strain rate (via dissipation)

and vorticity (via cnstrophy) are important in the energy tra_ sfcr process. On the other hand, if (7) is

used, one need reconsider the respective rolcs of full dissipation ,md enstrophy. In either case a more carcful

treatment of the effect of boundary condition on the average _ver a small sphere in inhomogencous and

anisotropic turbulence is necessary.
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